On the Existence of Hamiltonian Paths Connecting Lagrangian Submanifolds
نویسندگان
چکیده
Abstract. We use a new variational method—based on the theory of anti-selfdual Lagrangians developed in [2] and [3]—to establish the existence of solutions of convex Hamiltonian systems that connect two given Lagrangian submanifolds in R . We also consider the case where the Hamiltonian is only semi-convex. A variational principle is also used to establish existence for the corresponding Cauchy problem.
منابع مشابه
On the Existence of Hamiltonian Stationary Lagrangian Submanifolds in Symplectic Manifolds
Let (M,ω) be a compact symplectic 2n-manifold, and g a Riemannian metric on M compatible with ω. For instance, g could be Kähler, with Kähler form ω. Consider compact Lagrangian submanifolds L of M. We call L Hamiltonian stationary, or H-minimal, if it is a critical point of the volume functional Volg under Hamiltonian deformations, computing Volg (L) using g|L. It is called Hamiltonian stable ...
متن کاملHamiltonian-minimal Lagrangian submanifolds in complex space forms
Using Legendrian immersions and, in particular, Legendre curves in odd dimensional spheres and anti De Sitter spaces, we provide a method of construction of new examples of Hamiltonian-minimal Lagrangian submanifolds in complex projective and hyperbolic spaces, including explicit one parameter families of embeddings of quotients of certain product manifolds. In addition, new examples of minimal...
متن کاملAction Selectors and Maslov Class Rigidity
In this paper we detect new restrictions on the Maslov class of displaceable Lagrangian submanifolds of symplectic manifolds which are symplectically aspherical. These restrictions are established using action selectors for Hamiltonian flows. In particular, we construct and utilize a new action selector for the flows of a special class of Hamiltonian functions which arises naturally in the stud...
متن کاملHamiltonian Actions and Homogeneous Lagrangian Submanifolds
We consider a connected symplectic manifold M acted on properly and in a Hamiltonian fashion by a connected Lie group G. Inspired to the recent paper [3], see also [12] and [24], we study Lagrangian orbits of Hamiltonian actions. The dimension of the moduli space of the Lagrangian orbits is given and we also describe under which condition a Lagrangian orbit is isolated. If M is a compact Kähler...
متن کاملIsotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کامل